Face à l'augmentation du nombre de grands bâtiments commerciaux aux États-Unis, la demande d'inspections sûres et efficaces des toits a considérablement augmenté.
Chaque toit est unique et nécessite une inspection adaptée. Les fuites et les trous peuvent coûter des milliers de dollars et causer d'autres problèmes dans le bâtiment, et les grands bâtiments commerciaux disposant de systèmes de chauffage, ventilation et climatisation et de panneaux solaires nécessitent tous une inspection de routine.
L'essor des drones au cours des dix dernières années a changé notre façon d'inspecter les toits. Il n'est plus nécessaire de sortir les échelles et de faire de l'escalade. Un simple vol par drone permet de recueillir des informations précieuses qui peuvent être facilement partagées avec les parties prenantes et les décideurs.
Dans cet article, nous allons examiner de près les étapes à suivre lorsque vous utilisez des drones pour inspecter un toit.
Les toits ont des formes et des tailles très différentes. Certaines inspections concernent des toits résidentiels, mais la plupart portent sur des toits commerciaux. Il est important d'étudier l'ampleur du projet pour identifier la meilleure façon d'aborder le site.
La taille du toit est un facteur important. Sur un petit toit, quelques minutes (voire quelques secondes) suffisent pour repérer chaque détail. Les grands toits commerciaux peuvent quant à eux nécessiter des durées de vol plus longues, ce qui doit être pris en compte lors de la planification.
La hauteur du bâtiment est déterminante lors de la planification d'une mission. Un vol rapide jusqu'au sommet du bâtiment peut vous donner une idée de sa hauteur et vous permettre ainsi de mieux planifier la mission.
Il est également important de connaître l'environnement du bâtiment. Le Mavic 3 Enterprise utilise la transmission O3 Enterprise pour établir une connexion stable avec le drone, ainsi que le système d'évitement d'obstacles omnidirectionnel et le système APAS 5.0 pour assurer la sécurité du drone lorsqu'il vole dans des environnements exigus, ainsi que son retour en toute sécurité sur la base lorsque la mission est terminée. La sécurité en vol est notre priorité. Par conséquent, si l'inspection de toit concerne un bâtiment situé à côté d'un parking, veillez à respecter les directives de la FAA sur le survol de personnes par un drone. Lorsque vous planifiez une mission, assurez-vous que la ligne de vol verte ne tombe pas trop loin du périmètre du bâtiment, le cas échéant.
De nombreux équipements différents peuvent être installés sur le toit, il est donc important de comprendre l'objectif du projet. Des objectifs différents peuvent nécessiter une source de données différente (visuelle, thermique, etc.) ou des exigences de précision/résolution différentes.
Voici quelques-uns des principaux cas d'utilisation pour les inspections de toit :
Dans les cas nécessitant un capteur thermique (inspection des panneaux solaires, détection de fuites, inspection des systèmes de chauffage, ventilation et climatisation, etc.), le vol doit souvent être effectué juste après le coucher du soleil. Cela garantit l'absence de charge thermique due à la lumière directe du soleil, mais le toit et les panneaux solaires seront encore chauds de la journée. Évidemment, la détection de fissures dans un toit serait presque impossible avec le capteur visuel au crépuscule, il est donc parfois nécessaire de survoler deux fois le même toit (avant et après le coucher du soleil).
Pour la détection des fuites, évitez d'effectuer le vol directement après une averse. Il est préférable d'attendre au moins 24 heures après la pluie (jusqu'à une semaine) pour comprendre le système d'évacuation et identifier l'origine des fuites. L'analyse thermique risque également d'être compliquée si le vol est effectué trop rapidement après un événement pluvieux, où de l'eau stagnante peut masquer un problème.
Il est également important d'évaluer la taille du bâtiment. N'essayez pas de voler à 6 mètres du sommet du toit d'un très grand bâtiment commercial dès la première fois. Le vol serait trop long, mais également trop risqué pour un pilote inexpérimenté. Le Mavic 3 Enterprise, avec ses 42 minutes d'autonomie en vol et équipé du module RTK, permet d'effectuer de grandes missions. Il ne vous reste plus qu'à les planifier.
Les exigences en matière de précision des données pour l'inspection de votre toit sont un autre aspect à prendre en compte. Mesurer des cibles avec une station de base située au sommet du toit n'est pas toujours simple. Cependant, grâce au Mavic 3 Enterprise et au module RTK, vous pouvez obtenir une précision au centimètre près, sans points au sol (des points de référence sont toujours nécessaires pour valider la précision). La précision des données n'est pas toujours primordiale, car la majeure partie ne sert que dans le cadre de l'inspection, mais si les données doivent être mises en relation avec d'autres données de chantier, le module RTK constitue une excellente solution. Les technologies RTK, PPK et Cloud PPK peuvent vous aider à obtenir un haut niveau de précision pour votre projet.
Plusieurs facteurs doivent être pris en compte lors du choix des réglages de votre caméra/capteur. Le réglage automatique (Auto) est généralement suffisant pour recueillir des données exploitables, mais si vous recherchez des conseils pour régler le capteur visuel, voici nos recommandations :
Nous vous recommandons également de commencer par effectuer un premier vol rapide au-dessus du toit. Cela peut vous aider à trouver les meilleurs réglages de caméra avant le vol. Un toit peut s'avérer bien plus lumineux que ce que vous imaginez, donc si vous verrouillez manuellement les réglages de la caméra sur le premier waypoint, les images sont souvent « surexposées ».
La méthode d'inspection de toit la plus courante consiste à rassembler suffisamment de photos qui se superposent pour produire une carte haute résolution et un modèle 3D du toit. Vous pouvez y parvenir à l'aide de l'application DJI Pilot 2 si vous utilisez le drone Mavic 3 Enterprise.
Lors de la planification d'une mission, la meilleure méthode consiste à choisir l'option Mapping Mission. Visionnez le guide ci-dessous pour apprendre à utiliser l'option Mapping Mission.
Voici quelques réglages que nous recommandons spécifiquement pour les inspections de toit :
7 m | 0,2 cm/pixel |
15 m | 0,4 cm/pixel |
22 m | 0,6 cm/pixel |
30 m | 0,8 cm/pixel |
7 m | 0,26 cm/pixel visuel, 1 cm/pixel thermique |
15 m | 0,53 cm/pixel visuel, 1,98 cm/pixel thermique |
22 m | 0,78 cm/pixel visuel, 2,97 cm/pixel thermique |
30 m | 1,05 cm/pixel visuel, 3,96 cm/pixel thermique |
Maintenant que vous comprenez le bâtiment, que vous avez défini l'ampleur du projet et préparé votre mission de cartographie, vous devriez être prêt(e) pour la collecte de données sur le site.
Assurez-vous de toujours garder un contact visuel avec votre drone, ce qui peut s'avérer difficile lors d'une collecte sur des toits de bâtiment. Surveillez de près le plan de vol du drone et la caméra en vue subjective pour vérifier que vous ne survolez pas d'individus. Une fois votre mission terminée, le drone revient à sa base ou reste en attente (selon vos réglages de fin de mission).
Une fois la mission automatisée terminée, vous pouvez capturer des données supplémentaires sur le site (facultatif). L'écran de capture manuelle illustré ci-dessous présente de nombreuses fonctionnalités qui vous aideront à tirer le meilleur parti de votre inspection manuelle. Le Mavic 3 Enterprise et le Mavic 3 Thermal sont tous deux dotés d'un capteur de télézoom hybride 56x, et la molette de défilement droite permet de régler le niveau de zoom du capteur.
Pour mieux comprendre votre cible lors d'une inspection manuelle avec le Mavic 3T, DJI propose une vue Side by Side (En parallèle) pour afficher côte à côte le zoom et la caméra thermique. En cliquant sur le bouton SBS à l'écran, vous pouvez choisir d'afficher les deux vues simultanément.
Si vous utilisez le capteur de zoom avec le M3T, nous vous recommandons également d'utiliser la fonction Link Zoom (Lier le zoom) pour verrouiller les capteurs de zoom et thermiques au même niveau de zoom.
Une fois les données collectées sur le site, il est temps de les convertir en une orthomosaïque 2D et un modèle 3D de haute qualité. Grâce à DJI Terra, rien de plus facile. Regardez cette vidéo pour en savoir plus sur les étapes du traitement des données dans DJI Terra.
Voici les étapes rapides du traitement des données avec DJI Terra :
Notez que DJI Terra ne garantit pas un résultat de qualité radiométrique, mais uniquement les images brutes
Une fois l'opération terminée, consultez le rapport de précision pour connaître le niveau de détail de la carte. Vos données sont maintenant prêtes à être visualisées et exportées.
Nous vous encourageons à tester Terra pendant 1 mois en demandant une version d'essai à la fin de la page Web DJI Terra.
DJI Terra propose plusieurs fonctions pour vous aider à visualiser et à analyser vos données. Nos outils d'annotation vous permettent de mesurer les fissures et les fuites, ainsi que de naviguer autour du modèle 3D à l'aide de la souris. En cas d'affichage pendant une période prolongée, DJI Terra dispose d'un outil permettant de se déplacer autour du modèle 3D indéfiniment.
Examinons les résultats types des inspections de toit.
Lors de la recherche de fuites, de fissures et d'irrégularités thermiques, l'analyse s'appuie le plus souvent sur un modèle orthomosaïque 2D, plutôt qu'un modèle 3D. Un modèle 3D donne une perspective au site, mais la plupart du temps, les outils d'analyse tiers utilisés pour les inspections thermiques analysent les images brutes au lieu du modèle 3D. Si un client demande un ensemble de données, voici quelques formats pris en charge par DJI Terra. Toutes les données exportées sont géoréférencées et peuvent être importées dans un outil d'analyse tiers de votre choix (DroneDeploy, Raptor Maps, etc.)
DJI dispose également d'un outil d'analyse thermique. Dans cette application, vous pouvez analyser des images brutes et des ensembles de données traités pour comprendre pleinement les relevés de température. Un outil accessible au public d'Eric Olsen permet également de convertir des données thermiques au format RJPG afin de les importer dans les outils d'analyse thermique de Flir.
De nombreuses solutions spécialisées existent pour automatiser l'analyse des inspections. Si vous souhaitez automatiser la détection des fissures, la détection des fuites, les inspections solaires, etc., ces fournisseurs de solutions pourront vous aider à automatiser le processus.
DroneDeploy est un fournisseur de services de traitement cloud qui a cartographié et traité plus de 200 millions d'hectares dans le monde. Les outils qu'il propose couvrent de nombreux secteurs (construction, agriculture, pétrole et gaz, solaire, etc.). DroneDeploy fournit plusieurs outils spécialisés et rapports spécifiques sur les inspections de toit.
Le rapport sur les inspections de toit de DroneDeploy permet d'obtenir les dimensions des toits à partir d'un modèle 3D traité. Le cas d'utilisation concerne davantage la planification de l'installation de toit solaire et la recherche de la taille du toit, mais ne s'étend pas à la détection automatique des dommages.
DroneDeploy dispose également d'un outil d'analyse thermique radiométrique qui peut aider à déterminer les problèmes dans une carte thermique. Il suffit d'utiliser l'histogramme situé à gauche pour modifier la plage de températures. L'outil Side-by-Side peut également vous aider à comprendre les différences entre plusieurs dates de vol.
Si vous souhaitez vous concentrer davantage sur la détection des dommages, Loveland Innovations et Eagleview sont deux excellentes options pour la détection automatique des dommages. Ces fournisseurs proposent divers outils capables de détecter non seulement les fissures fines, mais également les petits trous et creux causés par la grêle et les dommages causés aux arbres. Découvrez ci-dessous l'outil Web IMGING de Loveland Innovation pour l'analyse des données, et un exemple de page de rapport d'Eagleview :
Et si vous préférez vous concentrer sur les images thermiques, Raptor Maps est très réputé pour ses outils d'analyse d'images thermiques. Avec plus de 50 GW de panneaux solaires analysés à ce jour, ses outils sont la solution idéale pour l'analyse de panneaux solaires. Voici une capture d'écran de l'outil qui vous permettra de comprendre la procédure d'inspection de panneaux solaires de ce fournisseur.
Merci d'avoir lu cette procédure. Pour en savoir plus sur les inspections de toit, consultez l'article ci-dessous.