Post-processed kinematic (PPK) is a method of using Global Navigation Satellite System (GNSS) data to accurately determine the position and trajectory of a rover/drone. PPK involves collecting raw GNSS data from a drone, along with information about the position and trajectory of nearby reference stations, and then processing the data after the fact to improve the accuracy of the position and trajectory information.
PPK is commonly used in applications such as surveying, mapping, and precision agriculture, where high-accuracy positioning is critical. Unlike Real-Time Kinematic (RTK) positioning, which requires a real-time wireless connection to reference stations, PPK can be done after the fact, allowing for greater flexibility in data collection.
The post-processing of GNSS data involves using specialized software to process the raw data collected by the receiver and compare it with data from nearby reference stations to determine the precise location of the drone at a given point in time. This process can improve the accuracy of the position and trajectory information by correcting for errors introduced by factors such as atmospheric conditions and satellite orbit deviations.
While both RTK and PPK positioning can be used for drone mapping applications, there are some advantages of using PPK over RTK:
Pros |
Cons |
|
RTK |
Real-Time Feedback: With RTK, real-time feedback is available during the mission, which can make it easier to identify and address issues as they arise. Fast Data Processing: RTK data can be processed quickly, which allows for a faster turnaround time for delivering the final product. User-Friendly: RTK is typically easier to use than PPK and requires less skill to set up and operate. |
Lower Accuracy: RTK accuracy can be affected by communication delays and interruptions, making it less accurate than PPK. Communication Dependency: RTK requires real-time communication with a reference station during the mission, which can be challenging in remote or rural areas with limited or no cellular coverage when using RTK via the NTRIP protocol. Higher Costs: RTK can be more expensive than PPK due to the need for additional RTK modules or NTRIP service subscription fees. |
PPK |
No Real-Time Communication Required: RTK requires real-time communication between the drone and the ground station to receive correction data from the reference station. PPK, on the other hand, does not require real-time communication as the correction data is applied later during post-processing. Greater Flexibility: With PPK, the drone can fly the mission and collect data, and the post-processing can be done later, providing greater flexibility for data collection, especially in areas with limited or no cellular coverage. Higher Accuracy: While both RTK and PPK can provide high accuracy, PPK can offer even higher accuracy as it is not subject to any potential communication delays or disruptions during data collection. PPK can also use more reference stations during post-processing, which can further improve the accuracy. Reduced Costs: PPK can be less expensive than RTK because it does not require real-time communication, which can require additional equipment and subscription fees. |
Longer Post-Processing Time: PPK requires post-processing of data, which can take time and delay the delivery of the final product. Minimal Flight Duration Requirement: To achieve accurate positioning data, it is necessary to capture sufficient GNSS data points during the flight. This means that the drone must fly for a certain duration and distance to capture enough data points for PPK processing. The exact duration and distance required will depend on various factors such as the GNSS receiver used, the quality of the reference station data, and the flying environment. Generally, a minimum flight duration of 10 minutes is recommended to capture enough GNSS data points for accurate PPK processing. However, this may vary depending on the specific requirements of the mapping project and the quality of the GNSS data collected. |
The selection of PPK or RTK for a mapping project ultimately depends on specific requirements, including flexibility, cost, and mission scale. Although both methods have their advantages and disadvantages, DJI Enterprise RTK drones always record satellite observation data. This ensures that even if an unstable cellular environment interrupts real-time communication during an RTK flight, the user can still retrieve base station data and use the PPK method as backup to output centimeter-level accurate data.
UAV and Payload Hardware (One of the options provided) |
Matrice 300 RTK + Zenmuse P1 |
Flight Mission Planning Software |
DJI Pilot 2 app |
Source for Base Receiver Independent Exchange (RINEX) file and Navigation files |
DJI D-RTK 2 Base Station |
Specialized PPK Software (One of the options provided) |
Propeller Aero |
Photogrammetry Software |
DJI Terra |
Performing a PPK process with drone image data may seem daunting, but it is actually a straightforward process that requires careful planning and execution. The process involves several key steps, which will be explored in more detail in the instructions below.
While performing a PPK process with drone image data may seem complex, it is a necessary process for obtaining accurate mapping results. By carefully planning the mission, collecting enough data, and performing quality control checks, you can ensure that the results are as accurate as possible.
Before flying your drone, it is important to properly configure your DJI Pilot 2 app. Here are a few tips to ensure a successful flight:
To properly process with the PPK method, drone data is essential. In addition to raw images, two additional files are required from the image folder: the drone Receiver Independent Exchange (RINEX) file and the image timestamp file.
The drone RINEX file contains raw GPS measurements that are critical for achieving high-accuracy positioning. This data is used to correct for errors in the GPS signal that can arise due to various factors such as atmospheric conditions and the position of the GPS satellites. Without this data, the accuracy of the PPK method would be severely compromised. The RINEX file, named “XXX_PPKRAW.bin,” can be found in the raw photo folder.
Similarly, the image timestamp file is crucial for accurate results. This file records the exact time each image was taken, which is necessary to properly synchronize the image data with the GPS measurements. Without this information, accurately aligning the image data with the GPS data would be very difficult, which would in turn negatively impact the accuracy of the final results. The timestamp file, named “XXX_Timestamp.MRK,” can also be found in the raw photo folder.
It is essential to ensure that these files are properly collected and processed in order to achieve the highest possible accuracy with the PPK method. And only a few RTK/PPK-supported DJI Enterprise drone models are able to output these files including:
DJI M300 RTK (with Zenmuse P1 or Zenmuse L1 payloads only)To perform PPK (Post-Processed Kinematic) processing using a base station for reference data, you typically need two types of files related to GNSS (Global Navigation Satellite System) data: a base RINEX file and a navigation file:
Within this instruction section, we will use the NGS CORS to obtain these GNSS files as an example:
To collect CORS reference data using the NOAA (National Oceanic and Atmospheric Administration) UFCORS (User Friendly CORS) service, follow these steps:
If there is no NGS CORS base station nearby the drone operation site, the DJI D-RTK 2 Mobile Station is a good option for obtaining base station data for PPK processing. To use it, simply set up the base station over a known point under WGS84 coordinates and ellipsoidal height in meters. Then, offset the base station location based on the 3D known point coordinates in the Pilot 2 app.
Make sure to set up the D-RTK 2 onsite first, and wait a few minutes before and after the flight to cover the entire flight duration. Also, avoid moving or tilting the D-RTK 2 base station during the drone flight, as it may interrupt data recording due to orientation changes. Once the flight is completed, connect the base station to a computer via a USB-C cable and export the .dat format RTCM (Radio Technical Commission for Maritime) files recorded after the flight. By using the DJI D-RTK 2 Mobile Station, you can avoid the need for additional equipment and subscription fees that may be required for real-time communication. This makes the PPK process more cost-effective and offers greater flexibility for data collection, especially in areas with limited or no cellular coverage.
This section provides a step-by-step process for applying drone data with GNSS rover files collected from NGS CORS, third-party Base Stations or the DJI D-RTK 2 Mobile Station to initiate the PPK process. We will be using RedCatch REDToolBox as an example:
Drone image POS (position and orientation) data refers to the information about the location, attitude, and trajectory of a drone when capturing images. This data is typically obtained using GPS and other sensors onboard the drone and is used to accurately geo-reference the images and create a 3D model or map of the surveyed area using photogrammetry techniques.
In the photogrammetry process, the drone image POS data is used in the aerotriangulation process to accurately determine the position and orientation of each image in 3D space. The aerotriangulation process involves computing the relative positions and orientations of the images based on their overlaps and corresponding image features. The drone image POS data is used to compute the orientation of each image in 3D space, and this information is used to generate a sparse point cloud that represents the surveyed area.
If the drone image POS data is inaccurate or imprecise, the output of the photogrammetry process will also be less accurate. Any errors in the drone image POS data can lead to errors in the aerotriangulation process, which will cause errors in the bundle adjustment process, and ultimately result in a less accurate output.
The accuracy of the drone image POS data impacts the global accuracy of the output during the PPK process. The PPK process corrects the drone image POS data for any errors caused by GPS drift or noise, and other sensor-related errors. The resulting PPK-corrected POS data is then used to generate a dense point cloud that represents the surveyed area, which can then be used to create 3D models or maps. Therefore, it is important to ensure that the drone image POS data is correctly defined in the photogrammetry process software.
We will be using DJI Terra software as an example to apply and overwrite the image POS data. Please follow the steps below or watch the video to apply and overwrite PPK-corrected image POS data in the Terra software:
To process the DJI LiDAR data using the PPK method, make sure to get the base station reference file prepared first. DJI LiDAR supports the following base station file formats and corresponding version:
Data Format | Version | Message Type | File name and file suffix need to rename to: |
---|---|---|---|
RINEX | V2.1.x | / |
DJI_YYYYMMDDHHMM_XXX.obs
|
RTCM |
V3.0 V3.2 |
V3.0: 1003, 1004, 1012, 1014 V3.2: MSM4, MSM5, MSM6, MSM7 |
DJI_YYYYMMDDHHMM_XXX.rtcm |
OEM |
OEM4 OEM6 |
RANGE
|
DJI_YYYYMMDDHHMM_XXX.oem
|
UBX | / | RAWX | DJI_YYYYMMDDHHMM_XXX.ubx |
It is recommended that the baseline, or distance between the base station used to record the PPK and the aircraft, be within 10km. the base station file used for PPK process must contain the entire LiDAR scan flight duration.
Follow the chart above to rename the base station reference file. It is important to rename both the file name and the file extension suffix of the base station reference data correctly. The name of the base station reference file should be identical and match with other LiDAR raw files. For the RINEX file, remember to change the file extension from .YYO to .obs.
Make sure that the renamed base station reference file is located in the same directory as the raw LiDAR data folder. Next, import the raw LiDAR data folder into DJI Terra and begin the process. DJI Terra will automatically read the base station reference file and initiate the PPK process with the PPK base station reference.
PPK provides an efficient and accurate solution for obtaining highly precise geospatial data for a variety of applications. By leveraging both GPS and post-processing techniques, PPK enables the delivery of centimeter-level accuracy results, even in challenging environments. By following the above PPK workflow and utilizing advanced software and hardware tools, you can ensure you are achieving the highest level of accuracy and precision in your data, ultimately leading to better decision-making and improved results.